Ihr Browser ist veraltet. Wir empfehlen Ihnen ein Update oder einen anderen Browser zum Besuch unserer Website.

 

University of Bayreuth, Press release No. 116/2021, 1 September 2021

Green hydrogen: University of Bayreuth develops electrolysers for a sustainable energy supply

The University of Bayreuth develops research on high-temperature electrolysis (HTEL) as part of the hydrogen flagship projects funded by the Federal Ministry of Education and Research (BMBF). The H₂Giga project focuses on the research, development, and industrial production of high-performance, low-cost electrolysers to meet Germany's demand for green hydrogen. One of the seven “scale-up projects” in H₂Giga is the H₂Giga project "HTs: HTEL Stacks – Ready for Gigawatt" coordinated by the company Sunfire. The Chair of Ceramic Materials Engineering receives funding of more than € 950,000 in this collaborative project for almost four years.

placeholder

Green hydrogen stores large amounts of sustainably produced energy and can be transported over long distances. Thus, it will be of central importance to our future energy supply. It is already foreseeable that the future demand in Germany alone will amount to several hundred million tonnes annually. 

To meet this demand, efficient, robust, and cost-effective electrolysers are needed to split water molecules using electrical energy from sustainable sources to produce hydrogen. The electrolysers have to be mass-produced on an industrial scale and be able to meet the European Union's hydrogen strategy target of 40 gigawatts of electrolysis capacity by 2030.

High-temperature electrolysis (HTEL) has proven to be a particularly promising technology for the production of green hydrogen. HTEL cells connected in series, known as HTEL stacks, serve as electrolysers. However, in order for the energy industry to have access to large-scale HTEL cells and stacks in the near future, considerable measures in research and development efforts are still necessary. These efforts encompass service life, material costs, efficiency, new technologies for stack manufacturing, as well as their use for hydrogen production in the high quantities required. 

placeholder

Joint research on high-temperature electrolysis at the Ceramic Materials Engineering research group: Prof. Dr.-Ing. Stefan Schafföner, Ilaria Bombarda M.Sc., Dr.-Ing. Carolin Sitzmann, and Dr. rer. nat. Nico Langhof (from left to right).

This is precisely where H₂Giga project "HTs: HTEL Stacks – Ready for Gigawatt" comes in. The Chair of Ceramic Materials Engineering at the University of Bayreuth is responsible for decisive research and development in this collaborative project. Both new electrolyser cells and those already in operation are to be investigated for their microstructure and thermomechanical properties. It is particularly important that the strength of the cells is maintained at high temperatures of up to 850 degrees Celsius. Only when the relationships between the microstructure and thermomechanical properties are scientifically understood will it be possible to predict ageing processes in the cells and to develop strategies for greater longevity.

"With the special competencies and many years of research experience we have gained in earlier projects on fuel cells and the characterisation of very thin ceramic films, we will be able to make important contributions to a sustainable energy supply based on hydrogen," says Prof. Dr.-Ing. Stefan Schafföner, Chair of Ceramic Materials Engineering. The research work of his team will be funded retroactively from 1 May 2021 until 31 March 2025.

placeholder

Ilaria Bombarda M.Sc., PhD student at the Ceramic Materials Engineering research group, at the high-temperature universal testing machine.

The upcoming work in Bayreuth will use experimental research methods such as light and scanning electron microscopy, X-ray diffraction, and non-destructive pulse excitation technology. Mechanical parameters on the ceramic thin films will be determined at up to 850 degrees Celsius by ring-on-ring tests and tensile tests using a laser extensometer. 

The research group's new, unique high-temperature universal testing machine, which was funded by the German Research Foundation (DFG) and the TechnologieAllianzOberfranken at the end of 2020, will be used for this purpose. In addition to the experimental work, simulations will be conducted using the finite element method to analyse the service life of HTEL cells. Particularly regarding the industrial implementation of the HTEL stacks, the Chair of Ceramic Materials will collaborate with numerous partners from academia and industry in the joint project "HTs: HTEL Stacks - Ready for Gigawatt". The overall organisational management of the collaborative project is in the hands of Sunfire GmbH in Dresden.

Background

The hydrogen flagship projects are the BMBF's largest research initiative to date on the subject of energy transition. In the industry-led lead projects, industry and science are jointly developing solutions for the German hydrogen economy: series production of electrolysers for hydrogen production (H₂Giga), offshore hydrogen production (H₂Mare), Transport solutions for green hydrogen (TransHyDE). The BMBF-funded hydrogen flagship projects are the result of an ideas competition: science, industry and civil society were invited to submit ideas for large-scale hydrogen projects. More than 240 partners have come together and will receive a total of about 740 million euros in funding. The hydrogen flagship projects will be funded over a period of four years. Further information is available at https://www.wasserstoff-leitprojekte.de.

Contact

placeholder

Prof. Dr.-Ing. Stefan Schafföner

Ceramic Materials Engineering

Phone: +49 (0)921 / 55-6500
E-Mail: stefan.schaffoener@uni-bayreuth.de

placeholder

Dr.-Ing. Carolin SitzmannCeramic Materials Engineering

Phone: +49 (0)921 / 55-6512
E-Mail: carolin.sitzmann@uni-bayreuth.de

placeholder

Christian Wißler

Deputy Press & PR Manager, Research Communication

Phone: +49 (0)921 / 55-5356
E-mail: christian.wissler@uni-bayreuth.de